

La mission C³IEL

<u>Cluster for Cloud evolution ClimatE and Lightning</u>

C. Cornet¹, D. Rosenfeld², E. Defer³, V. Holodovsky⁴, G. Penide¹, C. Price⁵, D. Ricard⁶, A. Rimboud¹, Y. Schechner⁴, Y. Yair⁷, C. Cheymol⁸, A. Deschamps⁸, A. Frid⁹, L. Gillot⁸, A. Kaidar⁹, and S. Aviad¹⁰

¹LOA, France | ²The Hebrew University of Jerusalem, Israel | ³Laero, France ⁴Viterbi Faculty of Electrical Engineering Technion, Israel | ⁵Tel Aviv University, Israel ⁶CNRM, France | ⁷Reichman University, Israel | ⁸CNES. France ⁹ Asher Space Research Institute, Israel | ¹⁰ ISA, Israel

Convective clouds are complex systems

Caractéristiques des instrument

https://videotheque.cnes.fr/index.php?urlaction=doc&id_doc=37976&rang=1&id_panier

2 synchronized satellites with :

Instrument	Characteristics	Variable	Targeted uncertainties
CLOUD (Day)	Visible imager at 647.5nm $\Delta x_{nadir} = 17 \text{ m}$ $\Delta t = 20 \text{s} \text{ during } 200 \text{s}$ FOV = 80 km x 45km	Cloud envelop developmment velocity	1-2 m.s ⁻¹ over 200s
WV (Day)	SWIR imagers at 1.04, 1.13 and 1.37 μ m $\Delta x_{nadir} = 125 \text{ m}$ $\Delta t = 20 \text{s}$ during 200s FOV = 80 km x 64km	Integrated water vapor content around clouds + water vapor vertical profile	few kg.m ⁻²
LOIP (Day and night)	Visible imager at 777.4 nm $\Delta x_{nadir} = 140 \text{ m}$; $\Delta t = 15 \text{ ms}$ FOV = 360 km x 302 km Photometer at 777.4, 337 and 391 nm FOV = ~360 km diameter sampling at 20 kHz	Spatial and temporal lightning activity	70 to 90% of detection efficenciy

Orbit : ascending node orbit at 1:30

Day orbit: 4 sequences of 11 acquisitions of 2 cloudy scenes (images)

Night orbit (LOIP) : continuous measurement during 1200s (20 min)

Sun-synchroneous orbit with local time at the tropics between 12:00 and 14:00 PM with a preferred time at 13:30 pm and a maximum drift of one hour, only toward a later local time (+1h)

Launch scheduled for 2028

CLOUD : Enveloppe et vitesse de développement du nuage par stéréo-restitution

Instrument	Characteristics	Variable	Targeted uncertainties
CLOUD (Day)	Visible imager at 647.5nm $\Delta x_{nadir} = 17 \text{ m}$ $\Delta t = 20 \text{s} \text{ during } 200 \text{s}$ FOV = 80 km x 45km	Cloud envelop developmment velocity	1-2 m.s ⁻¹ over 200s

L2A : 3D points de l'enveloppe du nuage L2B : vitesse de développement de l'enveloppe

+ L3 : vitesse moyenne de sommets nuageux sur 200s

Black vectors: Ground estimation velocity vectors. **Red vectors**: Velocity vectors from stereo-restitution **Green vectors**: Ground estimation vectors (originally plotted in black), close to the red stereo-restituted vectors.

WV : restitution de la vapeur d'eau autour des nuages

Instrument	Characteristics	Variable	Targeted uncertainties
WV (Day)	SWIR imagers at 1.04, 1.13 and 1.37 μ m $\Delta x_{nadir} = 125 \text{ m}$ $\Delta t = 20 \text{s}$ during 200s FOV = 80 km x 64km	Integrated water vapor content around clouds + water vapor vertical profile	few kg.m ⁻²

IWV AC (Autoencoder) (kg/m²)

la scène nuageuse 8000 30 6000 20 Vapor Content Env Moy 4000 8000 Vapor Content Retrieval $RMSE = 0.21 \text{ g/m}^3 (9\%)$ 10 7000 2000 Vapor Content Retrieval Mean RMSE = 0.12 g/m^3 (2%) = 0.864 6000 Altitude (m) 2000 3000 0009 11 acquisitions IWV AC (OEM) round truth TWV At 1040 nm (ARTDECO) (kg/m²) CTH (m) = CLOUD 2.00 1.0 2000 1.75 1.50 1000 30 1.25 $D_2 - 0.00$ 0 1.00 15.0 17.5 2.5 0.0 5.0 7.5 10.0 12.5 20 0.75 Vapor Content (g/m³) 0.4 0.50 10 0.2 0.25 0.00

20 30 Ground truth IWV AC (kg/m²

L2 : contenu intégré au-dessus des nuages

Thèse Alexis Zemb Peroni et al., 2025, AMTD 1040 nm (ARTDECO)

1130 nm (ARTDECO)

L3 : Profil moyen de

LOIP : Observation de l'activité électrique

Realistic numerical simulation of the optical lightning signal (*Rimboud et al.*, *in preparation*

Instrument	Characteristics	Variable	Targeted uncertainties
LOIP (Day and night)	Visible imager at 777.4 nm $\Delta x_{nadir} = 140 \text{ m}$; $\Delta t = 15 \text{ ms}$ FOV = 360 km x 302 km Photometer at 777.4, 337 and 391 nm FOV = ~360 km diameter sampling at 20 kHz	Spatial and temporal lightning activity	70 to 90% of detection efficenciy

L2A : Illuminated pixels are merged together to form a group, and groups in flashes, and flashes

New observations of convective clouds, their environments and the associated lightning activity

=

Launch in 2028!

Merci pour votre attention !